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Introduction

Introduction

In this module, we explore the algebra of least squares linear
regression systems with a special eye toward developing the properties
useful for deriving factor analysis and structural equation modeling.

A key insight is that important properties hold whether or not
variables are observed.
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Bivariate Linear Regression

Bivariate Linear Regression

In bivariate linear regression performed on a sample of n observations,
we seek to examine the extent of the linear relationship between two
observed variables, X and Y .

One variable (usually the one labeled Y ) is the dependent or criterion
variable, the other (usually labeled X ) is the independent or predictor
variable.

Each data point represents a pair of scores, xi , yi that may be plotted
as a point in the plane. Such a plot, called a scatterplot, is shown on
the next slide.

In these data, gathered on a group of male college students, the
independent variable plotted on the horizontal (X ) axis is shoe size,
and the dependent variable plotted on the vertical (Y ) axis is height
in inches.
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Bivariate Linear Regression

Bivariate Linear Regression
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Bivariate Linear Regression

Bivariate Linear Regression

It would be a rare event, indeed, if all the points fell on a straight line.
However, if Y and X have an approximate linear relationship, then a
straight line, properly placed, should fall close to many of the points.

Choosing a straight line involves choosing the slope and intercept,
since these two parameters define any straight line.

The regression model in the sample is that

yi = β̂0 + β̂1xi + ei (1)

Generally, the least squares criterion, minimizing
∑n

i=1 e
2
i under

choice of β̂0 and β̂1, is employed.

Minimizing
∑n

i=1 e
2
i is accomplished with the following well-known

least squares solution.

β̂1 =
rY ,XSY
SX

=
sY ,X
s2X

= s−1X ,X sx ,y (2)

β̂0 = Y • − β1X • (3)
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Bivariate Linear Regression

Bivariate Linear Regression
Deviation Score Formulas

Suppose we were to convert X into deviation score form. This would
have no effect on any variance, covariance or correlation involving X ,
but would change the mean of X to zero.

What would be the effect on the least squares regression?

Defining x∗i = xi − X •, we have the new least squares setup

yi = β̂∗0 + β̂∗1x
∗
i + e∗i (4)

From the previous slide, we know that
β̂∗1 = SY ,X∗/SX∗,X∗ = SY ,X/SX ,X = β̂1, and that

β̂∗0 = Y • − β̂∗1X
∗
• = Y •.

Thus, if X is shifted to deviation score form, the slope of the
regression line remains unchanged, but the intercept shifts to Y •.

It is easy to see that, should we also re-express the Y variable in
deviation score form, the regression line intercept will shift to zero
and the slope will still remain unchanged.
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Bivariate Linear Regression

Bivariate Linear Regression
Variance of Predicted Scores

Using linear transformation rules, one may derive expressions for the
variance of the predicted (ŷi ) scores, the residual (ei ) scores, and the
covariance between them.

For example consider the variance of the predicted scores. Remember
that adding a constant (in this case β̂0) has no effect on a variance,
and multiplying by a constant multiplies the variance by the square of
the multiplier. So, since ŷi = β̂1xi + β̂0, it follows immediately that

s2
Ŷ

= β̂21S
2
X

= (rY ,XSY /SX )2S2
X

= r2Y ,XS
2
Y (5)
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Bivariate Linear Regression

Bivariate Linear Regression
Covariance of Predicted and Criterion Scores

The covariance between the criterion scores (yi ) and predicted scores
(ŷi ) is obtained by the heuristic rule.

Begin by re-expressing ŷi as β1xi + β0, then recall that additive
constant β0 cannot affect a covariance.

So the covariance between yi and ŷi is the same as the covariance
between yi and β̂1xi .

Using the heuristic approach, we find that SY ,Ŷ = SY ,β̂1X = β̂1SY ,X

Recalling that SY ,X = rY ,XSY SX , and β̂1 = rY ,XSY /SX , one quickly
arrives at

SY ,Ŷ = β̂1SY ,X

= (rY ,XSY SX )(rY ,XSY /SX )

= r2Y ,XS
2
Y

= S2
Ŷ

(6)

James H. Steiger (Vanderbilt University) 9 / 30



Bivariate Linear Regression

Bivariate Linear Regression
Covariance of Predicted and Residual Scores

Calculation of the covariance between the predicted scores and
residual scores proceeds in much the same way. Re-express ei as
yi − ŷi , then use the heuristic rule. One obtains

SŶ ,E = SŶ ,Y−Ŷ

= SŶ ,Y − S2
Ŷ

= S2
Ŷ
− S2

Ŷ
(from Equation 6)

= 0 (7)
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Bivariate Linear Regression

Bivariate Linear Regression
Covariance of Predicted and Residual Scores

Calculation of the covariance between the predicted scores and
residual scores proceeds in much the same way.

Re-express ei as yi − Ŷi , then use the heuristic rule. One obtains

SŶ ,E = SŶ ,y−Ŷ

= SŶ ,y − S2
Ŷ

= S2
Ŷ
− S2

Ŷ
(from Equation 6)

= 0 (8)

Predicted and error scores always have exactly zero covariance, and
zero correlation, in linear regression.
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Bivariate Linear Regression

Bivariate Linear Regression
Additivity of Variances

Linear regression partitions the variance of Y into non-overlapping
portions.

Using a similar approach to the previous proofs, we may show easily
that

S2
Y = S2

Ŷ
+ S2

E (9)
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Multiple Linear Regression

Multiple Linear Regression

Multiple linear regression with a single criterion variable and several
predictors is a straightforward generalization of bivariatelinear
regression.

To make the notation simpler, assume that the criterion variable Y
and the p predictor variables Xj , j = 1, . . . , p are in deviation score
form.

Let y be an n × 1 vector of criterion scores, and X be the n × p
matrix with the predictor variables in columns. Then the multiple
regression prediction equation in the sample is

y = ŷ + e

= Xβ̂ + e (10)
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Multiple Linear Regression

Multiple Linear Regression

The least squares criterion remains essentially as before, i.e., minimize∑
e2i = e′e under choice of β̂. The unique solution is

β̂ =
(
X′X

)−1
X′y (11)

which may also be written as

β̂ = S−1XXSXY (12)
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Multivariate Linear Regression

Multivariate Linear Regression

The notation for multiple linear regression with a single criterion
generalizes immediately to situations where more than one criterion is
being predicted simultaneously.

Specifically, let n× q matrix Y contain q criterion variables, and let β̂
be a p × q matrix of regression weights. The least squares criterion is
satisfied when the sum of squared errors across all variables (i.e.
Tr(E′E)) is minimized.

The unique solution is the obvious generalization of Equation 11, i.e.,

B̂ =
(
X′X

)−1
X′Y (13)
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Multivariate Linear Regression

Multivariate Linear Regression

We will now prove some multivariate generalizations of the properties
we developed earlier for bivariate linear regression systems.

First, we prove that Ŷ = XB and E = Y − XB̂ are uncorrelated. To
do this, we examine the covariance matrix between them, and prove
that it is a null matrix. Recall from the definition of the sample
covariance matrix that, when scores in Y and X are in deviation score
form, that SYX = 1/(n− 1)Y′X. Hence, (moving the n− 1 to the left
of the formula for simplicity),
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Multivariate Linear Regression

Multivariate Linear Regression

(n − 1)SYE = Ŷ
′
E

=
(
XB̂
)′ (

Y − XB̂
)

= B̂
′
X′
(
Y − XB̂

)
= B̂

′
X′Y − B̂

′
X′XB̂

= Y′X
(
X′X

)−1
X′Y − Y′X

(
X′X

)−1
X′X

(
X′X

)−1
X′Y

= Y′X
(
X′X

)−1
X′Y − Y′X

(
X′X

)−1
X′Y

= 0 (14)
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Multivariate Linear Regression

Multivariate Linear Regression

The preceding result makes it easy to show that the
variance-covariance matrix of Y is the sum of the variance-covariance
matrices for Ŷ and E. Specifically,

(n − 1)SYY = Y′Y

=
(
Ŷ + E

)′ (
Ŷ + E

)
=

(
Ŷ
′

+ E′
)(

Ŷ + E
)

= Ŷ
′
Ŷ + E′Ŷ + Ŷ

′
E + E′E

= Ŷ
′
Ŷ + 0 + 0 + E′E

= Ŷ
′
Ŷ + E′E
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Multivariate Linear Regression

Multivariate Linear Regression

Consequently
SYY = SŶŶ + SEE (15)

Notice also that
SEE = SYY − B′SXXB (16)
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Extensions to Random Variables and Random Vectors

Extensions to Random Variables and Random Vectors

In the previous section, we developed results for sample bivariate
regression, multiple regression and multivariate regression.

We saw that, in the sample, a least squares linear regression system is
characterized by several key propertiesSimilar relationships hold when
systems of random variables are related in a linear least-squares
regression system.

In this section, we extend these results to least-squares linear
regression systems relating random variables or random vectors.

We will develop the results for the multivariate regression case, as
these results include the bivariate and multiple regression systems as
special cases.
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Extensions to Random Variables and Random Vectors

Extensions to Random Variables and Random Vectors

Suppose there are p criterion variables in the random vector y , and q
predictor variables in the random vector x. For simplicity, assume all
variables have means of zero, so no intercept is necessary. The
prediction equation is

y = B′x + e (17)

= ŷ + e (18)

In the population, the least-squares solution also minimizes the
average squared error, but in the long run sense of minimizing the
expected value of the sum of squared errors, i.e., Tr E (ee′).

The solution for B is
B = Σ−1xx Σxy (19)

with Σxx = E(xx′) the variance-covariance matrix of the random
variables in x, and Σxy = E(xy′) the covariance matrix between the
random vectors x and y.
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Extensions to Random Variables and Random Vectors

Extensions to Random Variables and Random Vectors

The covariance matrix between predicted and error variables is null,
just as in the sample case. The proof is structurally similar to its
sample counterpart, but we include it here to demonstrate several
frequently used techniques in the matrix algebra of expected values.

Σŷe = E
(
ŷe′
)

= E
(
B′x(y − B′x)′

)
= E

(
ΣyxΣ

−1
xx xy

′ − ΣyxΣ
−1
xx xx

′Σ−1xx Σyx

)
= ΣyxΣ

−1
xx E(xy′) − ΣyxΣ

−1
xx E(xx′)Σ−1xx Σyx

= ΣyxΣ
−1
xx Σxy − ΣyxΣ

−1
xx ΣxxΣ

−1
xx Σyx

= ΣyxΣ
−1
xx Σxy − ΣyxΣ

−1
xx Σyx

= 0 (20)
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Extensions to Random Variables and Random Vectors

Extensions to Random Variables and Random Vectors

We also find that
Σyy = Σŷŷ + Σee (21)

and
Σee = Σyy − B′ΣxxB (22)

Consider an individual random variable yi in y. The correlation
between yi and its respective ŷi is called “the multiple correlation of
yi with the predictor variables in x.”

Suppose that the variables in x were uncorrelated, and that they and
the variables in y have unit variances, so that Σxx = I, an identity
matrix, and, as a consequence, B = Σxy.
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Extensions to Random Variables and Random Vectors

Extensions to Random Variables and Random Vectors

Then the correlation between a particular yi and its respective ŷi is

ryi ,ŷi =
σyi ŷi√
σ2yiσ

2
ŷi

=
E
(
yi (b

′
ix)′
)√

(1)(b′iΣxxbi )

=
E (yix

′bi )√
(b′iΣxxbi )

=
E (yix

′)bi√
(b′iΣxxbi )

=
σyixbi√
(b′ibi )

=
b′ibi√
(b′ibi )

(23)
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Extensions to Random Variables and Random Vectors

Extensions to Random Variables and Random Vectors

It follows immediately that, when the predictor variables in x are
orthogonal with unit variance, squared multiple correlations may be
obtained directly as a sum of squared, standardized regression weights.

In subsequent chapters, we will be concerned with two linear
regression prediction systems known (loosely) as “factor analysis
models,” but referred to more precisely as “common factor analysis”
and “principal component analysis.”

In each system, we will be attempting to reproduce an observed (or
“manifest”) set of p random variables in as (least squares) linear
functions of a smaller set of m hypothetical (or “latent”) random
variables.
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Partial Correlation

Partial Correlation

In many situations, the correlation between two variables may be
substantially different from zero without implying any causal
connection between them.

A classic example is the high positive correlation between number of
fire engines sent to a fire and the damage done by the fire.

Clearly, sending fire engines to a fire does not usually cause damage,
and it is equally clear that one would be ill-advised to recommend
reducing the number of trucks sent to a fire as a means of reducing
damage.
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Partial Correlation

Partial Correlation

In situations like the house fire example, one looks for (indeed often
hypothesizes on theoretical grounds) a “third variable” which is
causally connected with the first two variables, and “explains” the
correlation between them.

In the house fire example, such a third variable might be “size of fire.”

One would expect that, if size of fire were held constant, there would
be, if anything, a negative correlation between damage done by a fire
and the number of fire engines sent to the fire.
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Partial Correlation

Partial Correlation

One way of statistically holding the third variable “constant” is
through partial correlation analysis.

In this analysis, we “partial out” the third variable from the first two
by linear regression, leaving two linear regression error, or residual
variables. We then compute the “partial correlation” between the first
two variables as the correlation between the two regression residuals.

A basic notion connected with partial correlation analysis is that, if,
by partialling out one or more variables, you cause the partial
correlations among some (other) variables to go to zero, then you
have “explained” the correlations among the (latter) variables as
being “due to” the variables which were partialled out.
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Partial Correlation

Partial Correlation

If, in terms of Equation 18 above, we “explain” the correlations in the
variables in y by the variables in x, then e should have a correlation
(and covariance) matrix which is diagonal, i.e., the variables in e
should be uncorrelated once we “partial out” the variables in x by
linear regression.

Recalling Equation 22 we see that this implies that Σyy − B′ΣxxB is
a diagonal matrix.
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Partial Correlation

Partial Correlation

This seemingly simple result has some rather surprisingly powerful
ramifications, once one drops certain restrictive mental sets.

In subsequent lectures, we shall see how, at the turn of the 20th
century, this result led Charles Spearman to a revolutionary linear
regression model for human intelligence, and an important new
statistical technique for testing the model with data. What was
surprising about the model was that it could be tested, even though
the predictor variables (in x) are never directly observed!
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